
CISCAV: Consensus-based Intersection Scheduling
for Connected Autonomous Vehicles

Emanuel Regnath
emanuel.regnath@tum.de

Technical University of Munich, Germany

Markus Birkner
markus.birkner@tum.de

Technical University of Munich, Germany

Sebastian Steinhorst
sebastian.steinhorst@tum.de

Technical University of Munich, Germany

Abstract—Intelligent vehicles that autonomously plan, com-
municate, and perform intersection crossings will reduce ac-
cidents and delays compared to human drivers. Previously
proposed solutions require the use of additional expensive
infrastructure, such as centralized Intersection Managers, or are
based on theoretical control optimization with over-optimistic
predictability of each vehicle’s behavior.

In this paper, we propose a decentralized intersection manage-
ment that requires no additional infrastructure and can tolerate
timing deviations due to unpredictable but detectable events,
such as pedestrian movement or ambulances. Vehicles cooperate
via direct VANET communication to agree on a schedule that
specifies the groups and the order in which approaching vehicles
will cross the intersection.

We have implemented our protocol as simulation using Artery
and SUMO. Our experiments show that CISCAV ensures safety
and reduces the average delay in high traffic conditions to 32 s
compared to 150 s for conventional crossing policies such as
traffic lights or priority roads.

Keywords—Traffic Management, CPS, SUMO, IoT

I. INTRODUCTION

Road intersections are not only a hot spot for accidents but
also cause delays and congestions, especially in urban areas.

According to [1], drivers in the US spend an additional 100
hours per year in their vehicles due to congestion and these
delays have caused additional costs of 88 billion USD in 2019.
This includes the costs for higher fuel consumption, higher
wear at certain components and additional costs due to longer
delivery times for goods. Apart from the financial impact
and delays, the congestions also contribute to environmental
damage and diminish the life quality in urban areas due to
pollution and smog.

One way to increase the efficiency and safety at intersec-
tions is the installation of an Intersection Manager (IM) unit
at every intersection, which performs the scheduling of all
autonomous vehicles. This approach may be suitable in areas
with high traffic volume but it requires a high financial and
logistical effort to install such a unit at every intersection
in rural areas [2]. Furthermore, a centralized intersection
management introduces a single point of failure, which would
require a high amount of maintenance and redundancy to
guarantee continuous operation.

Another approach could be a cloud-based management
engine, which virtually maps every existing intersection
and acts as a scheduling service to which all vehicles on
the road connect. However, this idea requires a continuous
Internet connection via cellular towers and is very sensitive to
(temporary) communication failures such as packet collisions
and network delays.

1

2
E.S.0

S.E.0

Schedule: 3
N

E

S

W

W.E.0

N.W.0
E.S.0
S.E.0
N.W.0
W.E.0

1.

2.

RSUIM
Figure 1: Vehicles agree on schedule groups using three commu-
nication phases: 1© Intra-Lane Exchange, 2© Inter-Lane Exchange,
and 3© Schedule Group Consensus. No Road-Side Units (RSU) or
central Intersection Managers (IM) are required.

By contrast, a decentralized approach in which vehicles
communicate directly with each other would be much more
robust to individual failures and does not require any additional
communication infrastructure.

A. Scope and Contributions

This paper addresses the scheduling problem for intersec-
tions and the required communication on an architectural
level. We assume that once the vehicles have agreed on a
schedule for crossing the intersection, they can execute a safe
crossing autonomously. Therefore, we do not cover the details
of physical driving maneuvers such as controller inputs, sensor
uncertainties, or data processing.

Instead, we focus on the problem of establishing and
agreeing on the order in which vehicles should cross the
intersection under the following assumptions:

• Not all vehicles are autonomous but autonomous vehicles
are able to detect human-driven vehicles via sensors.

• Autonomous vehicles can directly communicate with
each other and there exist no Road-Side Units (RSU).

• Environmental events can force vehicles to slow down
or deviate in other ways from the schedule (semi-
deterministic).

https://orcid.org/0000-0002-0006-7761
mailto:emanuel.regnath@tum.de
https://orcid.org/0000-0002-2835-0008
mailto:markus.birkner@tum.de
https://orcid.org/0000-0002-4096-2584
mailto:sebastian.steinhorst@tum.de

Figure 2: Possible groups of vehicles that can cross an intersection
simultaneously. Rotated versions are not shown but are also valid.

• Vehicles are cooperative but selfish, which means they
could send fake data if they gain an advantage (semi-
cooperative).

We introduce a complete decentralized and offline approach
which only uses direct wireless communication between
the participating vehicles. Our goal is an algorithm which
works even in rural areas without the need for cellular
coverage, central traffic management systems, or access to
cloud infrastructure. In particular, we

• propose a distributed intersection management scheme
which uses consensus to agree on schedule groups
(Section III),

• provide a C++ implementation for the realistic simulation
framework SUMO (Section IV),

• discuss related approaches from literature and why they
are over-optimistic (Section V),

• simulate and evaluate safety and delay (Section VI).

II. ASSUMPTIONS AND MODELS

Our approach is based on the following assumptions and
models, and in the remainder of this paper, we will implicitly
make use of them.

A. Intersection Model

We consider an intersection with four roads R =
{rN, rE, rS, rW} where each road is labeled according to
its cardinal direction: rN (north) for the top road, east, south,
and west accordingly. Each road has two lanes, one for
incoming traffic and one for outgoing traffic. There exists
an obligation to drive on the right side of the road. Figure
1 depicts the intersection and the nomenclature of the roads.
The intersection is embedded in the center of an area of
400× 400 meters, thus each incoming and outgoing lane has
a length of 200 meters.

B. Vehicle Model

Vehicles are either 1. human-driven and non-communicating
or 2. Connected and Autonomous Vehicles (CAVs). CAVs are
able to communicate with each other over a direct, short-range
VANET connection, which does not require any additional
infrastructure such as Road-Side Units (RSU) or cellular radio
towers. Furthermore, CAVs are able to detect human-driven
vehicles by onboard sensors.

C. Problem Scenario

A set V = {v1, v2, ...vN} of N ∈ N vehicles arrives at the
intersection. Each vehicle is defined as vi = rX.rY.Z, with
the current incoming road rX ∈ R, the desired outgoing road
rY ∈ R, and the index Z ∈ N0, which counts the vehicles

W.E.1 W.E.0 N.W.0 E.S.0 S.E.0

ID

Phase 1: Intra-LanePhase 1: Intra-Lane

Desired Directions
Phase 2: Inter-LanePhase 2: Inter-Lane

Calc. Sched.
Phase 3: Deciding SchedulePhase 3: Deciding Schedule

cross
Phase 4: Cross & NotifyPhase 4: Cross & Notify

Figure 3: Sequence diagram of our consensus protocol. Arrows
indicate messages sent over VANET. Gray bars indicate the time
needed for computation or executing an operation.

on each incoming road. For example, vi = W.S.0 is the first
vehicle on the west road that will arrive at the intersection
desiring a right turn towards south. In this paper, the four
cardinal directions are used for an intuitive discussion but
any number of roads with unique identifier mappings could
be used.

III. OUR APPROACH

The main idea of this paper is the use of schedule groups
specifying the sequence in which vehicles will cross the
intersection without exact timing information. Excluding
timing requirements from the schedule allows vehicles to focus
only on the order and right of way independent of individual
vehicle properties that are time-sensitive, such as agility,
reaction time, or accuracy of location estimation. Furthermore,
excluding time also allows the protocol to tolerate unexpected
events that cause vehicles to slow down or stop such as
pedestrians or ambulances.

A. Schedule Groups

A schedule group consists of a set of vehicles and assigns
each vehicle an order value based on their desired direction,
which would be the outgoing lane ID (= cardinal point for
simplicity). The combination of directions corresponds to
a predefined ordering, which is stored in a look-up table.
Vehicles with the same order value can cross the intersection
simultaneously. Once all vehicles of the same order have
crossed the intersection (and broadcast that), the next order
vehicles start crossing until all vehicles of the schedule
group have crossed the intersection. For our 4-leg intersection
example, Figure 2 shows the possible combinations of vehicles
that can cross together and Table I shows examples of concrete
schedule groups.

Group Members Pattern Schedule Order of Crossings

0

carW.E.0
carN.W.0
carE.S.0
carS.E.0

SRLR 2111

1. car N.W.0
car E.S.0
car S.E.0

2. car W.E.0

1 carW.E.1 S––– 1––– 1. carW.E.1

Table I: The two schedule groups that are formed based on the
scenario from Figure 1. The direction pattern is Straight-Right-Left-
Right which results in a 2111 schedule (predefined look-up table).
The first three vehicles of schedule group 0 can cross simultaneously.

B. Virtual MiniMap
While approaching the intersection, other detected vehicles

will be added to the list of known vehicles. The state
information of all known vehicles will be stored in a virtual
MiniMap, which will be continuously updated over time. For
example, ID (license plate), velocity, desired direction and
index position towards the intersection will be stored here. The
index of each vehicle corresponds to the number of vehicles
on the same lane that will cross the intersection before them.
Therefore, the vehicle next to the intersection has index 0
and the vehicle behind it has index 1. Note that the indices
only establish a relative order on each incoming road but are
not synchronized with other roads. Once a larger gap occurs
and the next vehicle is outside of the communication range
of the previous vehicle, it will start with index 0 again.

C. CISCAV Protocol Description
The CISCAV Protocol (Consensus-based Intersection

Scheduling for Connected Autonomous Vehicles) is a se-
quence of the following four phases. Any autonomous vehicle
which approaches an intersection has to execute all four phases
to reach a consensus on a schedule of crossings.

Phase One: Intra-Lane Information Exchange Before
getting near the intersection, each vehicle will already ex-
change messages with surrounding vehicles on the same lane
during driving. The acquired information such as desired
direction, velocity, and position of vehicles is stored in the
virtual MiniMap.

Phase Two: Inter-Lane Information Exchange Vehicles
within 150 m to the intersection will broadcast messages to
exchange information with vehicles on other incoming roads.
This new information will also be stored in the MiniMap,
which will incrementally create an ordered list of all vehicles
for each incoming road.

Phase Three: Deciding Schedule An optimized schedule
is created based on the concept of schedule groups. All
vehicles which are the first ones on each incoming road that
are not already part of an existing schedule group form a new
schedule group. Based on the pattern of desired directions, a
schedule order is calculated as shown in Table I. Afterwards,
every member of a schedule group repeatedly broadcasts
the schedule group and updates the MiniMap with received
broadcasts. Once all members have received a broadcast with
the same schedule from all other members, they lock the
schedule group.

CAVs which do not participate in this phase will not gain
any advantage because they would block themselves as well.

OMNET++SUMO

Veins

Artery

Vanetza

Scenarios
XML TraCI

IntersectionService

+ Initialize()

+ Trigger()

+ Indiciate(msg)

+ Finish()RuleManager

KnownVehicle
Manager

KnownVehicle

(TCP)

MiniMap

Figure 4: Illustration of our software architecture and its interaction
with the simulation environment. The XML scenario files specify
the random traffic flows for SUMO, which will spawn vehicles
accordingly. Our protocol runs as service in Artery.

Phase Four: Cross & Notify Once all vehicles from one
schedule group are next at the intersection, they cross the
intersection based on their agreed schedule. They continue to
broadcast results and positions to inform new arriving vehicles
on the agreed schedule and the states of other vehicles.

Figure 3 shows the message exchange during each phase.
Algorithms 1 and 2 describe the pseudo code of our imple-
mentation that is discussed in Section IV.

D. Consensus Properties

CISCAV ensures that vehicles agree on the schedule group.
In conventional consensus protocols, such as PBFT [3],
participants can start in a conflicting state and the protocol
must converge to agreement. In our situation, we already have
a fixed set of schedules (look-up table) such that every correct
vehicle will calculate the same schedule. As discussed in [4],
consensus for traffic decisions cannot tolerate any failing
vehicle. As soon as a conflict arises, the consensus fails and
needs to be repeated until unanimous agreement is reached
or otherwise resolved manually.

The only parameter that can cause disagreement is the set
of vehicles in a schedule group because some vehicles could
try to join when the agreement round has already started. In
case a vehicle has decided on a schedule group, it will no
longer accept any proposals or votes to extend or change a
schedule group. In case a vehicle has not decided yet, the
currently proposed schedule group can be extended (but never
reduced). Extensions can happen until there is a vehicle from
every incoming road in the schedule group. After that there
are no further updates possible and every correct vehicle will
calculate the same schedule group.

E. Handling Human-Driven Vehicles

Since there is no synchronous timing requirement for the
schedules, CISCAV can tolerate human-driven vehicles as
well. We assume that human-driven cars can be detected in
Phase 2 because they appear on sensors (e.g. Camera, LIDAR)
but do not respond to messages. Because of this, it will
not be possible for autonomous vehicles to form a schedule

Algorithm 1: Trigger()
Data: myData = {currRoadId, nextRoadId, frontVeh,

backVeh, ScheduleGroup}, MiniMap
1 if not near intersection then
2 if frontVeh or backVeh are unset then
3 broadcast myData;

4 if ScheduleGroup is empty then
5 create ScheduleGroup from MiniMap;
6 broadcast myData
7 else if ScheduleGroup is non empty then
8 broadcast ScheduleGroup
9 else if ScheduleGroup is final then

10 while others before me in ScheduleGroup do
11 wait for notifications

12 cross intersection

group and, as a result, they will fall back to conventional
traffic policies. Only in case that all the vehicles next at the
intersection are CAVs, a schedule group is formed. In this case
the vehicles deviate from the conventional traffic policies and
perform a more efficient crossing. In this manner, CISCAV
can tolerate any percentage of human-based vehicles and will
“kick in” once only CAVs meet.

IV. IMPLEMENTATION

We have implemented CISCAV in C++ as a message
handling service for the simulation frameworks Artery and
SUMO, which aim for a realistic modeling on several
abstraction layers. Our overall architecture is depicted in
Figure 4.

A. Used Frameworks
In detail, we have build CISCAV on top of the following

framework stack (from physical- to communication-level):
SUMO or “Simulation of Urban MObility” simulates road

traffic on various road network geometries. The geometries
are either exported from open street map data or are created
by hand. Our custom-designed traffic flow is defined in XML-
files which are loaded by the simulator. The application either
runs in combination with V2X communication system or it
is able to run independently where traffic flow is simulated
without communication among the created vehicles [5].

OMNeT++ is a discrete event simulator for network
communication [6].

Vanetza implements the ETSI C-ITS protocol suite and
supports the specified communication standards [7].

Veins simulates Inter-Vehicular Communication. It con-
nects OMNeT++ and SUMO [8] .

Artery The V2X simulation framework enables commu-
nication based on the ETSI ITS-G5 specification. It is the
highest abstraction of all the underlying communication and
vehicular simulations [9].

B. Software Details
Our main class IntersectionService inherits from Artery’s

ItsG5Service, which allows us to send messages and provides
callbacks for the initialization of vehicles, receiving of

Algorithm 2: Indicate(IntersectionMessage)
Data: newVeh from recv. IntersectionMessage, MiniMap,

myData
1 if not near intersection then
2 if newVeh not in MiniMap then MiniMap.add(newVeh);
3 if newVeh in front of me then
4 set myData.frontVeh = newVeh
5 else if newVeh behind me then
6 set myData.backVeh = newVeh

7 else if near intersection then
8 if my ScheduleGroup is final then return;;
9 if newVeh.ScheduleGroup equals my ScheduleGroup

then
10 set newVeh as agreeing
11 if all vehicles in my ScheduleGroup agree then
12 mark ScheduleGroup as final;

13 else if newVeh.ScheduleGroup extends my
ScheduleGroup then

14 update my ScheduleGroup
15 else
16 keep my ScheduleGroup

messages, and finalization (simulation end) of vehicles. We
use or overwrite these functions to include our protocol. Every
vehicle runs its own instance of our service class.

• Initialize: Called on vehicle creation. We initialize
our internal data structures such as roadID and schedule
groups with the vehicle itself as the only member.

• Trigger (Algorithm 1): Called periodically by the simula-
tion. Here, we broadcast periodic beacons for discovering
other approaching vehicles. Additionally, a schedule
group is created with all the first vehicles on the other
incoming roads which are in a certain range close to
the intersection and are not already part of a schedule
group. Each position must be verified by at least one
other vehicle in order to be accepted in a schedule
group. Updated information is broadcast at the end of
the function call.

• Indicate (Algorithm 2): Called on message reception.
Every received message is processed in this function,
which updates our data structure and creates a virtual
map of the intersection. The updated data is used in the
next call of Trigger.

• Finish: This function is called when a vehicle exits the
simulation. It collects all the diagnostic data.

V. RELATED WORK

A good overview of cooperative IM approaches is presented
in two surveys [2] and [19] from 2016 while more recent
developments are covered in the introduction of [20].

We found that we can classify existing approaches in
roughly two types: 1. Exclusive Reservation and 2. Control
Optimization. Each type can be further distinguished into
centralized, if it uses a central manager which handles the
calculation and communication, or decentralized, if vehicles
calculate individually and communicate directly with each
other.

Algorithm Intersection Vehicle Results

Name Type Simulation S/L Legs/Near L [m] V
[
m
s

]
Acc.

[
m

s2

]
L-S-R [%] Avg. Delay

AIM08 [10] Cent./Res. Custom +1 125m/– N/A 25.0 N/A 0-100-0 0.2 s@0.5 v/s/ln

Prio14 [11] Cent./Res. SUMO/10min +3 290m/50m N/A 12.0 −4 . . . 2 20-70-10 15 s@0.5 v/s/rd

Delay17 [12] Cent./Res. SUMO +1 50m/50m N/A N/A N/A. . .N/A 20-70-10 35 s@0.5 v/s/rd 1

CSIP19 [13] Cent./Res. AutoSim +2 500m/N/A 2.6 13.4 N/A. . .N/A 0-33-66 ≈0 s@0.5 v/s/rd

NoStopSign08 [14] Dec./Res. Custom +1 125m/75m N/A N/A N/A 15-70-15 20 s@0.4 v/s/ln

MP-IP12 [15] Dec./Res. AutoSim/1000 veh. +2 N/A < 5 N/A N/A . . . 3 25-50-25 2 s@0.5 v/s/rd

MutEx14 [16] Dec./Res. NS-3 +2 50m/50m N/A N/A N/A N/A 19 s@0.5 v/s/rd

VTL15 [17] Dec./Res. SUMO+NS3 +4 200m/N/A N/A 16.7 −6 . . . 3 N/A 35 s@N/A

DIMP18 [18] Dec./Res. SUMO +(1/2) 500m/358m 5m 13.41 −2 . . . 1 N/A 17 s@0.5 v/s

CISCAV (ours) Dec./Res. SUMO / 3600 s +1 200m/100m 4.3 13.9 −7.5 . . . 2.9 33-33-33 32 s@0.5 v/s/rd

Table II: Overview of related work. Type is a combination of {Central/Decentral} and {Reservation/Control}. S/L indicates the shape of the
intersection (`, +, +×) and the number of incoming lanes for each direction. Legs/Near is the length of the intersection roads per leg and the
distance from the center at which vehicles start broadcasting messages. L, V, Acc. states the vehicle Length; max. Velocity; and maximum
deceleration (negative) and Acceleration considered. L-S-R are the probabilities for a vehicle to turn left (L), go straight (S), or turn right (R)
in percent. Each related approach did not mention at least one of these parameters (N/A).

Exclusive Reservation: The intersection is divided into
discrete resources, such as tiles or pre-defined paths. Vehicles
then negotiate and agree on a conflict-free reservation schedule
where each vehicle gets exclusive access to resources until
it crossed the intersection. Exclusive reservation is safe but
does not optimize throughput as vehicles often reserve more
resources than actually needed. Furthermore, it is compatible
with human-driven cars, which simply can get their own
reservation slot based on existing traffic rules.

Control Optimization: Instead of discrete reservation,
vehicles try to calculate smooth and collision-free trajectories
in the continuous spectrum of possible trajectories, which can
be followed by accelerating or braking. The trajectory search
is formulated as a control problem with certain constraints
(collision-free) and certain optimization objectives (e.g.
latency, smooth acceleration). While this approach yields
good results in simulations, its computation is expensive
(state explosion), introduces hard real-time requirements, and
often does not consider failures, such as a vehicle unable to
apply acceleration or braking as claimed.

For this reason, we will cover only Exclusive Reservation
and focus on decentralized approaches as these are most
comparable to our work. Table II summarizes our findings.

A. Centralized Exclusive Reservation

AIM08 [10] from 2008, divides the intersection into a
grid of n × n tiles. Vehicles request a slot in space-time
for crossing from a central intersection manager, which will
then assign tiles to vehicles. Each vehicle sends a request
including time-of-arrival (TOA), velocity, and size to the IM.
The IM calculates a motion profile for the vehicle according
to a policy, e.g. “First come, first serve” (FCFS), and sends
it back to the vehicle. If no collision-free path can be found,

the reservation request is rejected and the vehicle has to slow
down, possibly resting until a trajectory becomes available.

Prio14 [11] provides dedicated lanes for left-turn, straight,
and right-turn and maximizes vehicle speed. Instead of a
custom simulator, Prio14 was implemented in SUMO.

Delay17 [12] provides a delay-tolerant centralized protocol,
which considers communication delays and packet losses.
Since it was also implemented in SUMO and focuses on
real-world conditions, it is one of the few related works for
which we consider results comparable to our work. The result
stated in the table is for normal message delay (OMNeT).
One of the main differences is their central IM, with all the
previously mentioned drawbacks.

CSIP19 [13] tries to maximize throughput with a minimum
gap between vehicles that is still comfortable for human
passengers. Vehicles that approach the intersection are equally
spaced and must keep a constant velocity to ensure that no
vehicle needs to slow down while crossing the intersection.

B. Decentralized Exclusive Reservations
In NoStopSign08 [14], each vehicle generates and con-

tinually broadcasts a CLAIM (includes direction, arrival
time, and exit time), which “reserves” the next free slot that
does not conflict with already received claims. If conflicts
occur, vehicles can send CANCEL messages and/or updated
CLAIM messages. Simulation reaches near-zero delay for
spawn rates of < 0.2 v/s. However, due to the lack of
agreement confirmations from other vehicles, the authors
reported collisions when the packet loss exceeds 40%.

In MP-IP12 [15], the intersection has two lanes per
direction and is divided into 4 × 4 tiles. Each vehicle
continuously broadcast its state (ENTER, CROSS, EXIT) and
the tiles it will occupy updated over time. Vehicle receiving

1Authors just state 45s total travel time and we subtracted 10s to estimate
the delay because 10s was the total travel time for the lowest spawn rate of
0.1v/s, for which we assume almost no interruptions.

ENTER/CROSS messages drive as far as possible into the
intersection and only stop in front of conflicting tiles. Once
crossed, vehicles broadcast EXIT to free the tiles. In the
published videos of the updated algorithm [13], the vehicles
are spawned in a periodic pattern with a distance that allows
vehicles to cross alternatingly with minimal (hardly visible)
speed variations. It remains unclear whether the protocol
would work with random spawn patterns.

In MutEx14 [16], vehicles broadcast their estimated arrival
time at the intersection via REQUEST messages. Vehicles with
shorter arrival times will respond with a REJECT message,
blocking the vehicle from crossing until all vehicles with
shorter arrival times have crossed. If no REJECT is received
(timeout) or only PERMIT messages from vehicles with
higher arrival times are received, the vehicle will cross
the intersection. Evaluation is purely based on the network
simulator NS-3 in combination with static time counting for
vehicle movements (e.g. 4 s to turn left).

Virtual Traffic Light (VTL15), is a 2015 patented idea
first described in [21] and improved in [17]. The first vehicle
arriving at an intersection becomes a temporary IM and assigns
itself a virtual red light. It stops and assigns virtual green
lights to other vehicles. This simple and elegant idea provides
reasonable delays but it is not robust as it does not consider
selfish incentives, e.g. vehicles slowing down to not become
the leader with the red light.

DIMP18 [18] uses clusters and the vehicle closest
to intersection will reach an agreement on the schedule.
They also limit deceleration to reduce passenger discomfort.
However, they measure “waiting time” for vehicles without
defining how it is calculated and it is unclear whether their
spawn rates are per lane, per road, or per intersection in total.

VI. EVALUATION

We evaluate our approach based on the most important
metrics safety and delay. For us, the delay is the additional
time for a vehicle to completely cross an intersection compared
to a crossing where the vehicle has priority from the beginning
and can cross without any interactions with other vehicles.

Related work sometimes measures throughput. However,
this metric is difficult to define for low spawning rates because
the exit rate is basically the entry rate. Based on our findings,
throughput is only interesting if the spawn rate is maximum.
Since intersections normally experience income rates below
the maximum, we only measure delay.

A. Experimental Setup

In SUMO, we have created random traffic flows for our
4-leg intersection. Vehicles have equal probabilities (33.3%)
for each direction: left, straight, or right. We randomly spawn
vehicles at the beginning of the roads (200 m from the center)
with a given probability that is equal for all directions. For
example, 0.5 v/s/rd means that on average 0.5 vehicles will
be spawned per second at each road. We spawn vehicles
over a period of 3600 s and run the simulation until every
vehicle has crossed the intersection. We have performed this
experiment for varying spawn probabilities over 4 crossing

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Probability of spawning a vehicle [vec/s]

0

50

100

150

200

250

M
ea

n
D

el
ay

[s
]

CISCAV

Priority

Right Before Left

Traffic Light

Figure 5: Average delay measurements for all four traffic policies
over different spawn probabilities.

policies: Traffic light, priority road, left before right and
CISCAV. To be able to compare our work against related
approaches, which assume 100% autonomous vehicles, we
have only spawned 100% CAVs. However, the design of
CISCAV allows to also handle human-driven vehicles as
mentioned earlier in Section III-E.

B. CISCAV results
During the simulation, no accidents occurred. While we

did not explicitly stress-test our design with injected failures,
it illustrates that random traffic flow is handled safely under
normal conditions. Figure 5 shows the delays for each traffic
policy. For a spawn rate of 0.5, CISCAV has an average delay
of about 32 s. This is a much higher value than the values
reported by most related work. One of the reasons is that
CISCAV is currently creating schedule groups in onion-like
layers and does not set a lasting priority like a green light for a
certain road. Another reason could be that related approaches
have different definitions of delay or use over-optimistic
assumptions. However, CISCAV outperforms all conventional
traffic policies by far and illustrates how much optimization
is possible by autonomous intersection scheduling.

C. Reproducing AIM08 Results
Since the AIM08 [10] is such an influential paper, we

decided to reproduce results for our intersection model using
their open-source AIM simulator version 1.0.3. We have
simulated a single +1 intersection for 1000 s at a spawn rate
per road of 1800 v/h/rd = 0.5 v/s/rd using vmax = 15 m/s
(closest). The simulator outputs entry and exit times of the
vehicles in seconds. We have calculated the delay as

tdelay = Texit − Tentry −∆Tfree (1)

with ∆Tfree = 11 s as the measured mean travel time from
entry to exit for a vehicle without intersection.

To our surprise, the average delay is t̂delay ≈ 13.5 s, which
is far away from the 0.2 s reported in the original paper.
This illustrates the high sensitivity of the delay with regard
to simulation parameters such as lane numbers and vehicle
velocity.

VII. DISCUSSION

Performance of Related Work: While most related
approaches report much lower delay times than CISCAV,
they are often based on optimistic assumptions in the best
case, and completely unrealistic assumptions in the worst case.
For example, in some simulations of [13], vehicles approach
the intersection equally spaced at a constant speed and keep
minimum safety distances during the crossing. The tendency
of some papers to optimize delays on idealized conditions
has also been pointed out by [18]. Although performance is
important, CISCAV’s primary focus lies on reaching a safe
agreement on exclusive reservation under unreliable conditions
before any actions are taken. This results in delays that cannot
compete with delays under ideal conditions but are still much
lower than existing policies, such as traffic lights.

Weaknesses of CISCAV: In this first version of CISCAV,
we create schedule groups in onion-like layers, which means
vehicles from the same lane cannot cross the intersection
directly after each other if the other lanes have also incoming
vehicles. In high traffic conditions, this is not the most efficient
way to reduce average delay and leads to frequent start-stop
maneuvers when several vehicles approach the intersection
from the same lane. Currently, we do not handle different
vehicle types and the fact that large trucks might prevent
certain schedule combinations and need to cross smaller
intersections alone. Furthermore, our current implementation
of CISCAV cannot resolve any permanent communication
failures after schedule groups have been confirmed. That is,
once a schedule is agreed and the last vehicle of the previous
schedule group has left the communication range, the current
group will wait for the missing crossing notification forever.
However, this is no limitation of the protocol itself and can
be resolved easily using sensors.

Strengths of CISCAV: CISCAV is completely decentral-
ized and does not depend on any additional infrastructure.
The use of schedule groups focuses purely on the order in
which vehicles cross and therefore allows to tolerate arbitrarily
vehicle timings and delays. It is designed in a way that allows
to be transient for human-operated vehicles. This means that
schedules, which deviate from the existing traffic rules, will
only be created once only CAVs approach an intersection.
We have implemented and evaluated CISCAV in the realistic
simulation tool SUMO using C-ITS messages standardized
by the EU. In its first version, it performs well in low load
scenarios and outperforms current traffic rules.

VIII. CONCLUSION

CISCAV reaches a distributed agreement on exclusive
reservation by creating schedule groups before any actions
are taken, allowing it to tolerate arbitrary timing deviations
as they can occur in real-world conditions.

In comparison to the sometimes over-optimistic related
work, CISCAV gives realistic estimations for the delay of
safe autonomous intersection crossing. Our measured average
delay of ≤ 32 s at a very busy intersection supports the
hypothesis that communication-based intersection handling
can outperform currently existing traffic rules.

CISCAV does not require any additional infrastructure,
makes conservative assumptions, and focuses on providing
high safety guarantees, which is a fundamental requirement
if we want to convince people in the near future to actually
trust their lives on autonomous intersection management.

REFERENCES

[1] INRIX, “Congestion Costs Each American Nearly 100 hours,
$1,400 A Year,” 03 2020, https://inrix.com/press-releases/
2019-traffic-scorecard-us/.

[2] L. Chen and C. Englund, “Cooperative intersection management: A
survey,” IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 2, pp. 570–586, 2016.

[3] M. Castro, B. Liskov, and Others, “Practical Byzantine Fault Tolerance,”
in Proceedings of the Third Symposium on Operating Systems Design
and Implementation, vol. 99, 1999, pp. 173–186.

[4] E. Regnath and S. Steinhorst, “Cuba: Chained unanimous byzantine
agreement for decentralized platoon management,” in Design, Automa-
tion and Test in Europe (DATE 2019), March 2019, pp. 426–431.

[5] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using SUMO,” in The 21st IEEE Int.
Conf. on Intelligent Transportation Systems. IEEE, 2018.

[6] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” 01 2008, p. 60.

[7] R. Riebl, “Vanetza,” June 2015, accessed: 20-05-06.
[8] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled

Network and Road Traffic Simulation for Improved IVC Analysis,”
IEEE Transactions on Mobile Computing (TMC), vol. 10, no. 1, pp.
3–15, January 2011.

[9] R. Riebl, H. Günther, C. Facchi, and L. Wolf, “Artery: Extending Veins
for VANET applications,” pp. 450–456, 2015.

[10] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” Journal of Artificial Intelligence Research,
vol. 31, pp. 591–656, 2008.

[11] X. Qian, J. Gregoire, F. Moutarde, and A. De La Fortelle, “Priority-
based coordination of autonomous and legacy vehicles at intersection,”
in 17th international IEEE conference on intelligent transportation
systems (ITSC). IEEE, 2014, pp. 1166–1171.

[12] B. Zheng, C.-W. Lin, H. Liang, S. Shiraishi, W. Li, and Q. Zhu,
“Delay-aware design, analysis and verification of intelligent intersection
management,” in 2017 IEEE International Conference on Smart
Computing (SMARTCOMP). IEEE, 2017, pp. 1–8.

[13] S. Aoki and R. R. Rajkumar, “Csip: A synchronous protocol for
automated vehicles at road intersections,” ACM Trans. Cyber-Phys.
Syst., vol. 3, no. 3, 8 2019.

[14] M. VanMiddlesworth, K. Dresner, and P. Stone, “Replacing the stop
sign: Unmanaged intersection control for autonomous vehicles,” in
Proceedings of the 7th international joint conference on Autonomous
agents and multiagent systems-Volume 3, 2008, pp. 1413–1416.

[15] R. Azimi, G. Bhatia, R. Rajkumar, and P. Mudalige, “Intersection
management using vehicular networks,” SAE Technical Paper, Tech.
Rep., 4 2012.

[16] W. Wu, J. Zhang, A. Luo, and J. Cao, “Distributed mutual exclusion
algorithms for intersection traffic control,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 1, pp. 65–74, 2014.

[17] J. Shi, C. Peng, Q. Zhu, P. Duan, Y. Bao, and M. Xie, “There is a
will, there is a way: A new mechanism for traffic control based on
vtl and vanet,” in 2015 IEEE 16th International Symposium on High
Assurance Systems Engineering. IEEE, 2015, pp. 240–246.

[18] X. Liang, T. Yan, J. Lee, and G. Wang, “A distributed intersection
management protocol for safety, efficiency, and driver’s comfort,” IEEE
internet of things journal, vol. 5, no. 3, pp. 1924–1935, 2018.

[19] J. Rios-Torres and A. A. Malikopoulos, “A survey on the coordination
of connected and automated vehicles at intersections and merging at
highway on-ramps,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 5, pp. 1066–1077, 2016.

[20] A. Mirheli, M. Tajalli, L. Hajibabai, and A. Hajbabaie, “A consensus-
based distributed trajectory control in a signal-free intersection,”
Transportation research part C: emerging technologies, vol. 100, 2019.

[21] M. Ferreira, R. Fernandes, H. Conceição, W. Viriyasitavat, and O. K.
Tonguz, “Self-organized traffic control,” in Proceedings of the seventh
ACM international workshop on VehiculAr InterNETworking, 2010.

https://inrix.com/press-releases/2019-traffic-scorecard-us/
https://inrix.com/press-releases/2019-traffic-scorecard-us/
https://doi.org/10.23919/DATE.2019.8715047
https://doi.org/10.23919/DATE.2019.8715047
https://elib.dlr.de/124092/
https://doi.org/10.1145/1416222.1416290
https://doi.org/10.1145/1416222.1416290
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1145/3226032
https://doi.org/10.1145/3226032
https://doi.org/10.4271/2012-01-0292
https://doi.org/10.4271/2012-01-0292

