LeapChain: Efficient Blockchain Verification for Embedded loT

Emanuel Regnath
emanuel.regnath@tum.de
Technical University of Munich, Germany

ABSTRACT

Blockchain provides decentralized consensus in large, open net-
works without a trusted authority, making it a promising solution
for the Internet of Things (IoT) to distribute verifiable data, such
as firmware updates. However, verifying data integrity and consen-
sus on a linearly growing blockchain quickly exceeds memory and
processing capabilities of embedded systems.

As a remedy, we propose a generic blockchain extension that en-
ables highly constrained devices to verify the inclusion and integrity
of any block within a blockchain. Instead of traversing block by
block, we construct a LeapChain that reduces verification steps with-
out weakening the integrity guarantees of the blockchain. Applied
to Proof-of-Work blockchains, our scheme can be used to verify
consensus by proving a certain amount of work on top of a block.

Our analytical and experimental results show that, compared to
existing approaches, only LeapChain provides deterministic and
tight upper bounds on the memory requirements in the kilobyte
range, significantly extending the possibilities of blockchain appli-
cation on embedded IoT devices.

CCS Concepts: - Computer systems organization — Embedded and
cyber-physical systems; Peer-to-peer architectures;

Keywords: Internet of Things, Embedded, Blockchain, SPV

1 INTRODUCTION

Distributed embedded systems often face the challenge to reach con-
sensus about a global system state. However, traditional consensus
protocols, such as PBFT, only work for small network sizes, as nodes
need to know all identities and exchange data with each other [1].
With the Internet of Things (IoT) as an emerging future of billions
of interconnected devices, this requirement renders these solutions
infeasible for scaling [2].

Cryptocurrencies such as Bitcoin [3] reach consensus on global
transactions in a large, trustless, and open peer-to-peer network
without any central authority. The transactions are stored in a dis-
tributed chain of blocks (blockchain), each block securing the order
and integrity of previous blocks. While cryptocurrencies focus on
transactions of assets, it is possible to store any data in a blockchain
[4] and there exist ideas to transfer this technology to the embed-
ded domain, such as for secure peer-to-peer firmware updating and
validating [5-7]. For this scenario, a manufacturer would publish
a signed hash of the latest firmware on a blockchain, where the
signature is verified by all full powered network participants and —

With the support of the Technische Universitat Miinchen - Institute for Advanced
Study, funded by the German Excellence Initiative and the European Union Seventh
Framework Programme under grant agreement n° 291763.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD ’18), November 5-8, 2018, San Diego, CA,
USA, https://doi.org/10.1145/3240765.3240820.

Sebastian Steinhorst
sebastian.steinhorst@tum.de
Technical University of Munich, Germany

a) | [Block Header Blockchain Window

= = = =
e M 1
Block Data

: : H(-) o

‘ verification

<

e
b) Block Header time

prev-hash

-

me
— —4
I;I I;I
—*

]

i
i}
i
|

. Block Data

' ' n-3 n—-2 n—1 n
Figure 1: LeapChain Verification. We extend the conventional block
structure a) that only connects a block to its direct predecessor, by a
leap-hash b) allowing us to traverse the blockchain with a reduced
amount of steps to verify the inclusion and integrity of block data.

if valid - included in the blockchain. An IoT end node could then
receive a new firmware from any possible peer and verify its valid-
ity and integrity by simply comparing its hash to the hash in the
blockchain [4]. This solution is more robust as it avoids a single
point of failure, more efficient because the end nodes do not need to
perform public key cryptography, and more transparent as any new
update is publicly verified on the blockchain.

However, due to the constant growth of the blockchain, down-
loading and processing the entire chain requires more and more
resources over time. Each additional block increases the communi-
cation overhead, memory allocation, processing time, and power
consumption of each device. For example, to verify the current Bit-
coin blockchain, an embedded device would need to download and
hash approximately 40 MB of block headers?, already using simpli-
fied verification [8].

For the vast majority of cheap IoT devices, the blockchain length
will quickly exceed their resource capabilities, rendering verification
impossible. In the case of firmware updates, this might introduce
severe vulnerabilities or leave devices unable to continue their in-
tended service. It is therefore necessary to develop a verification
approach for the embedded domain, in order to efficiently and safely
use blockchain technology in constrained IoT environments.

1.1 Contributions

We propose LeapChain, a generic blockchain data structure, appli-
cable to any kind of blockchain technology, and its corresponding
algorithms for efficient verification of blocks. The concept reduces
verification steps by additional backlinks as illustrated in Figure 1
and enables embedded devices to verify blockchain content using
only a few kilobytes of RAM. In particular, we

e introduce a novel interlink pattern using only one additional
backlink per block (Section 2),

!Calculation based on 500 000 block-headers (reached Dec. 2017) of 80 bytes.

ICCAD ’18, November 5-8, 2018, San Diego, CA, USA

e provide methods for constructing a LeapChain that allows
to verify the inclusion and integrity of a block, as well as
consensus verification for Proof-of-Work blockchains using
only a logarithmic amount of blocks (Section 3),

o evaluate upper bounds and show that LeapChain outperforms
related approaches (Section 4) in a simulation framework and
on embedded hardware (Section 5).

LeapChain guarantees deterministic and tight upper bounds for
hardware requirements regarding memory and computation. This
enables a safe and efficient embedded design, which is not possible
using any existing state-of-the-art approach.

1.2 Blockchain Model and Terminology

For our contribution, we only consider the core components of a
blockchain model that are required in the most narrow definition. Be-
cause of these minimal requirements, we will be able to demonstrate
that our approach is applicable to any kind of existing blockchain
implementations. We derive our notation from [9] that is also used
by [10] to which we will later compare our approach.

Blockchain. The blockchain is a distributed data structure that
stores a system state over time and is shared and replicated by all
nodes [4]. Formally, a blockchain is an ordered chain

C:{Biliel,...,n}, B;i < Bjs1 (1)

of n blocks B; where n is the height of C and i the height or index
of B;. Each block confirms and reinforces the data of its preceding
block by including the hash of the previous block in its own block
(Figure 1a). For all hashes, we assume a single cryptographic hash
function H(-) that outputs a hash h of x bits:

H(-): {0,1}* — {0, 1}*. (2)

Including the previous hash in each block secures the integrity and
ordering of the blocks because any change to the data of an existing
block would result in changing hashes of all consecutive blocks. A
block is represented by the tuple B; = (hy, hq) with the prev-hash
hp = H(Bj-1). The actual data D; of a block can be of arbitrary
structure and is bound to a block only by its hash hy = H(D;).

As we aim for a general embedded application, we do not make
assumptions about the data of a block and will not provide details
about any transaction system used in cryptocurrencies.

Depending on the consensus mechanism, additional information
must be stored in each block. Note that this information can be
stored in the block data D;, which could then again be divided
into consensus header information and another payload hash hcp,
leading to a hierarchical layer structure. However, using only two
hashes as the block header is a minimal, yet sufficient specification
to model any kind of blockchain application.

For simplicity, in the remainder of this paper, we refer to the block
header as the block itself.

Proof of Work (PoW). Most blockchain implementations secure
the construction of the chain by a cryptographic puzzle called Proof
of Work (PoW). In a PoW blockchain, the block structure is extended
by a nonce field ctr € [0, 232[such that B; = (hp, hy, ctr).

Nodes with high computational power, called “Miners”, verify
new data D;,11 according to application-specific rules?, pack them

2E.g. in Bitcoin the miners validate transactions but they could also validate the signature
of a new embedded device firmware.

E. Regnath and S. Steinhorst

into a new unconfirmed block Bj+1, and iteratively try to find a ctr
such that

Bnt1 = (H(Bn), H(Dp+1), ctr)

where T is the target value of the hash. Since the output of the hash
is unpredictable, the only way to find such a low hash is to brute
force it. T can be seen as the difficulty of the PoW puzzle: the lower
T, the more tries are necessary on average.

The first miner who finds a valid hash, shares its block with the
network and retrieves a reward in return. Each node in the network
will validate the new block, append it to its local blockchain, and
start the mining race on the next block.

Since a higher number of miners will find a valid hash in shorter
time, the average time needed to find a valid hash would decrease.
To keep the network stable, the difficulty is adjusted by consensus
to keep the average blocktime constant.

PoW is the consensus mechanism that enables a trustless, open
network where everyone can participate. A node joining the network
could receive several different blockchains but will always select
the one representing the most PoW as the common consensus by
verifying and summing up the PoW of each block. However, nodes
cannot absolutely determine when the consensus is reached. At any
time, a longer valid blockchain could appear, replacing blocks of the
shorter one. The likelihood that such an event changes a certain
block quickly approaches zero with the number of succeeding blocks.
The blockchain is secure because of the assumption that an honest
majority of processing power will on average generate PoW faster
than any dishonest minority [3, 9].

A HBp1) <T (3)

2 OUR LEAPCHAIN APPROACH

The main foundation of this paper is our blockchain extension that
inserts additional connections with a special backlink pattern to
speed up traversing the chain without weakening its integrity guar-
antees. Note that to traverse a conventional blockchain backwards,
a node needs to iteratively verify the direct predecessor of a block
using the prev-hash h;, block by block. As shown in Figure 1, we
extend the conventional block structure, such that each block header
stores one additional back-linking leap-hash h; that “points” further
back than just the direct predecessor — leaping over several blocks
in between.

The memory overhead of this extension is minimal compared
to the size of the full blocks of a blockchain. Since this additional
leap-hash is part of the header that is hashed, it provides the same
integrity mechanism as the prev-hash. Overhead and integrity will
be further analyzed in Sections 5.1 and 5.2.

Leap-Width. The distance between the current block B; and the
block Bj_,, that matches the leap-hash hj = H(B;—,,) is the leap-
width w. With our extension, it is possible to traverse back the
blockchain either step by step using the prev-hash hy, or in steps of
width w using the leap-hash h;. The first intuition would be to choose
a constant w, which allows to reach any block within approximately
% of the steps required for the conventional blockchain. However,
this would improve the amount of steps only by a linear factor,
which would contradict our goal to reach any block with a sub-linear
amount of steps. Since the blockchain is continuously growing in
height, we need a flexible leap-width w(i) depending on the current
height i of a block.

Backlink Pattern. In order to achieve a logarithmic scaling, we
use several leap-widths w(i) € W based on different exponents to

LeapChain: Efficient Blockchain Verification for Embedded loT

Conventional Blockchain

ICCAD ’18, November 5-8, 2018, San Diego, CA, USA

P N iy Sy Sy S S S S g S S S S Sy b o b b —
Blockldx. @ 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 64 65 66 67 68 69 70 71 ... 256
Prev. Idx: - 6 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 63 64 65 66 67 68 69 70 255
LeapChain Extension ==
Block Idx: /8 1" 2" 374 5 6 7 @ 9 10 1112 13 14 1516 17 18 1920 21 22 23 64 65 66 67/68 69 70 71 260
Leapldx: |- © ® 6.6 1 6 6.6 5 0 6.0 9 0 0, 013 2 0 017 6 © © 6150 3 06554 7 ... 4
4-line:) ‘ 1 ‘ 5 ‘ ° ‘ 13 ‘ 17 ‘ 61 ‘ 65

16-line:)) o) 2 6 50 54

64-line: o) o o) o ... 3 7 ...
256-line: [¢] (] [¢] [¢] [¢] [¢] (¢] 4

Figure 2: The LeapChain extension and its interlink pattern. In a conventional blockchain only the hash of the previous block is stored, which
allows only to verify (jump to) the previous block. With the LeapChain extension, an additional leap hash is stored in each block that allows
wider jumps. In this example we use a leap base of b = 4 resulting in 4 colored leaplines that allow us to jump back either 4, 16, 64, or 256

blocks. Each leapline can be reached within 4 consecutive blocks.

a constant base b. These leap-widths are calculated from the block
height i according to

. b?
w(i) = {b(l mod b)

which ensures that 1) there are exactly |W| = b different leap-widths,
2) all leap-widths have a single common divisor b and 3) each leap-
width is b times the previous leap-width.

Beginning with i = 1, we assign each block of height i a leap-hash
that belongs to the w(i)-th previous block. If w(i) points to a block
index i < 0 we set the leap-hash to the hash of the genesis block

(i = 0). This pattern has the following four properties:
p1) Each block leaps back to a block with the same leap-width
forming a continuous leapline.
p2) There are % leaplines for each leap-width w.
p3) Each block belongs to exactly one particular leapline.

p4) Any leapline can be reached within b consecutive blocks.

if imodb =0

e w={p b5 ... bt} @
otherwise { } @

If we need to jump b times on one leapline, we can also jump
once on the next wider leapline instead, which leads to a logarithmic
amount of steps based on the distance.

Example. Consider the case where base b = 4, which would
result in four leap-widths {41,42,43,44} = {4, 16, 64, 256}. The
resulting leap pattern is illustrated in Figure 2. All blocks with index
imod 4 = 1, which are colored in green?, form a single leapline with
leap-width w = 4 (see p1). The next leap-width is w = 16 (orange)
and between two connected orange blocks, we have 4 — 1 other
orange blocks, each belonging to one of the 14—6 = 4 separate leaplines
of width w = 16 (see p2). For w = 64, we have % different leaplines
and so on. The common base b = 4 ensures that all leaplines jump
multiple of 4 and thus a block of one leapline will never hit a block
of another leapline (see p3). As a result, block 2 can be reached from
block 69 in 4 steps: 68, 67, 3, 2. Of course, the maximum leap-width
Wmax = 256 is not sufficient to maintain a logarithmic scaling for
large blockchains. In Section 5.1 we will compare different choices
of the base b and its implications.

3 VERIFICATION METHODOLOGIES

In this section, we discuss how the leap pattern can be used to
verify that a certain block X and its data Dy, which could, e.g., be a

3References to the colors of leaplines are only made to support the reader but are not
mandatory as leaplines can be identified by block index as well.

firmware hash, are included in a blockchain C and were confirmed
by consensus. For this verification, we first need to prove that X is
indeed part of C by checking the integrity of the chain and second
that the most recent blocks of C reflect the current consensus.

Note that these two verification steps are fundamentally different.
For inclusion verification, we just need the hashes that are stored
in the header and we will illustrate that, in this case, LeapChain
is sufficient to provide a general solution with the same integrity
guarantees as the full chain. For consensus verification, however, we
need to consider the underlying consensus mechanism which we do
not cover in general due to its diversity. We will only illustrate and
analyze that LeapChain works for the common Proof-of-Work mech-
anism with sufficient security (detailed in Section 5.2) compared to
the full chain.

In general, we can use the additional backlinks to construct a
LeapChain that proves the integrity of the blockchain C between two
blocks X,Y € C with X < Y. This LeapChain efficiently traverses C
from Y to X by a subset of blocks £ C X, ..., Y, providing evidence
that X is indeed part of the same chain as Y.

In the following, we assume a network running a distributed
blockchain application. We distinguish two types of nodes that run
the exact same application but differ in the amount of blocks they
can afford to store. First, we have a memory-constrained node —
called verifier V - that wants to verify that a block X and its data
Dy is part of the blockchain C. V cannot afford to store C entirely.
The second type is a full node — called prover P — that stores the
entire blockchain C. Verifier V therefore requests a “proof” £ from
a prover P in order to verify properties about the entire blockchain
that it cannot verify solely from processing its partial local copy of
the blockchain. Prover P constructs the proof £ from its full local
copy of C and sends it back to V, which will process L to decide
whether the property about C holds or not.

In Section 3.1, we first discuss the case that Vknows a valid, more
recent block Y > X that is part of the current consensus and needs
to look up a previous block X that was pruned. This scenario applies
to embedded nodes that keep a rolling window of the most recent
blocks (suffix) and works for any kind of blockchain.

In Section 3.2 we discuss the case that V only knows the genesis
block of the blockchain and needs to verify that block X is part of
C and that it is accepted consensus of the network. This scenario
applies to nodes that initially join a blockchain network and only
works for PoW blockchains.

ICCAD ’18, November 5-8, 2018, San Diego, CA, USA

Unknown Prefix X Unknown Infix Y Known Suffix
III...[:].U. III Iﬂi e Iiﬂ e III e Iz; ﬁﬂ{ Ii!.u

remsss-

! Infix Proof £, .

1 N N —_— — — " 1

! NN !
-[10fe 11«12«13 -+ (17«18 --- 34 - 50 - 664 67<]68<{69| -

. walk jump 4 jump 16 walk 1

Figure 3: Infix-proof using b = 4. £;, traverses from Y = 69 to X = 10
(distance § = 59) using only 10 intermediate blocks. The first leap-
width is w = b¢ = 4% because e = [log,(59)] = 2.

3.1 Verification of Inclusion with Infix Proofs

Verifier V can verify that any block X is part of C if it knows a
more recent block Y € C with X < Y. First, V requests block X
including data Dy from the network. Any node that knows Dx and
the corresponding block X = (hp, by, hq) may send it to V as a reply.
The replying node does not need to know the full chain and does
not need to be trusted. To verify that Dx belongs to X, V simply
checks hq = H(Dx). Afterwards, V requests a LeapChain L;, from
P.

The prover P, which knows the complete blockchain C or at least
X...Y C C, is able to construct a LeapChain Lj; € X...Y as an
infix proof. This proof Lj, connects the two blocks X and Y using
much less blocks than the full subchain X...Y but provides the same
integrity. Figure 3 shows an example how £ connects X and Y. As
a requirement, each block L; € £;, must keep the same order as in
C and only link back to a previous block, such that each backlink is
secured by the hash of its corresponding block.

Proof Construction. The infix proof L, will be constructed based
on the distance § between the known block Y at height i}, and the
target block X at height i;. The block indices of L;, are determined
by Algorithm 1. First, we initialize the LeapChain with £;, = {Y}
(line 2). We iteratively calculate the exponent e of the largest leapline
that fits into the remaining distance dist (l. 3-5), how many steps
we need to walk to this leapline (1. 9), and how often we can jump
on this leapline (1. 16), which is expressed by

leapcount(dist, e) = |dist/b¢]. (5)

We append all involved blocks to Li, (1. 10-12, 17-19) and start the
next iteration until we reach block X. The last iteration is likely to
be e = 0 and w = 1 which means we have a “walking” phase at the
end. Since both hashes A and h;, are included in the blocks, this
phase can be seen as an iteration of leaps with w = 1 and does not
need to be considered a special case. At the end, we prune the blocks
X and Y from the proof (l. 22) because they are already known by
the verifier and do not need to be transmitted.

The resulting infix proof L;, proves the integrity of C between
any two blocks X < Y and thus also proves consensus for X if Y is
known to be part of the consensus. If we do not know whether Y is
part of the consensus, we need to verify this with a suffix proof.

3.2 Verification of Consensus via Suffix Proofs

We will now illustrate that LeapChain is not only suitable for verify-
ing the inclusion of blocks but can also improve the efficiency for
verifying the consensus property. We will illustrate this only for the
common Proof-of-Work mechanism but we are confident that our
concept could be adapted to other mechanisms as well.

1

2
3
4
5
6
7
8
9

E. Regnath and S. Steinhorst

function leap_chain_idx (in, it):
leapch = list(in)
while leapch.last() > it do
dist = leapch.last() - it
e= _logh(dist)J

walk to leap line
if (e >0):
steps = (leapch.last() —e) modb
foreach i in [1, steps 1 do
leapch.append(leapch.last() - 1)
done
endif

jump down leapline or directly walk (e = 0)
leaps = leapcount(dist, e)
foreach j in [1, leaps] do
leapch.append(leapch.last() - b¢)
done
done

return leapch[1:-1]1 # prune iy and it

Algorithm 1: Pseudocode for LeapChain construction.

If we consider a PoW blockchain, V can request two LeapChains
in order to verify that a block X is part of C and that X is common
consensus with a certain probability. In this case, V does not need
to know any recent block Y > X of the blockchain but only the
hash H(By) of the genesis block By or H(B¢) of another commonly
known checkpoint block B¢ where By < Be < X.

The PoW consensus requires that each block hash needs to be
below the target value T, which is determined by a certain difficulty.
This difficulty is usually calculated from previous blocks using times-
tamps. Since we will leap blocks, V cannot determine the difficulty
for the blocks of a LeapChain because it does not know the difficulty
of the intermediate blocks. However, this problem could be solved
by including the current difficulty in the block data such that miners
can extract and verify the difficulty from each single block.

In the following, we choose another option and assume a constant
difficulty, which means that each block hash needs to be below the
same target value T that will never change. Even though practical
blockchain applications based on PoW with a flexible number of Min-
ers require a variable difficulty, we use this simplification because it
is used by [9], the main theoretical framework for PoW, and thus
also used by [8, 10], to which we later want to compare our work
using similar assumptions. As pointed out by [9] and [8], analyzing
a constant difficulty is sufficient, because accounting for variable
difficulty can be easily achieved by counting blocks proportional to
their difficulty. We will further discuss this matter in Section 5.2.

We store the additional fields, required for the PoW consensus,
in the block data, such that the size of our block header does not
change and we do not need to consider any differences between our
minimal model for a general blockchain and the special PoW case.

First, V verifies that X is connected to B¢ and thus part of the
same blockchain as B¢ by requesting an infix proof L, from a
prover Pusing the method described in Section 3.1.

However, till now Lj; is not sufficiently secure to proof that X is
part of the current consensus. As shown in Figure 4, an adversary
could reuse the existing prefix By...B;—1 and only mine a block X’
that includes some fake data and valid backlinks to the existing
prefix. Therefore, V requests a second proof Ly, that puts a certain
amount of cumulative PoW on top of X as evidence that X was
confirmed by several succeeding blocks and is indeed part of the
consensus.

LeapChain: Efficient Blockchain Verification for Embedded loT

2 !_!

itk

)

Figure 4: a) Valid prefix and suffix proofs of the block X (blue) with
a data value of 42. b) In case no more recent block Y > X is known,
an adversary could try to provide proofs for a fake block X’ with a
different value 13. The adversary could reuse the prefix but needs to
mine a suffix proof from block i to i + k (dashed orange).

Since each block needs to satisfy the same target value T, each
block contributes the same amount of required PoW. We therefore
construct a proof Lg, of certain length m confirming block X by m
succeeding blocks which inherit m times the PoW of a single block.

An adversary would now need to mine a fake block X’ and all m
blocks of L, to convince V that X’ is part of the consensus, which
is infeasible.

In order to calculate Lg,, we adjust the leapcount function of
Algorithm 1 such that we only leap blocks if there are enough blocks
left that will increase the cumulative PoW. Therefore, after each
block we add to Ly, we need to have m — | Lgy| blocks left that we
could “walk” block by block to produce the required length. More
specifically, the amount of leaps on each leapline b¢ with e > 0
should satisfy

dist — leaps - b® > (m — | Ls|) — leaps (6)
which can be solved for 1leaps and leads to
dist—m+lleapch|J e>0

leapcount(dist, e) = { be-1

dist

7
e=0

for Algorithm 1. If m > §, the algorithm now adds all § indices to
leapch and at least m indices otherwise.

If V receives two competing PoW LeapChains Lg,1 and Lg,2
with different blocks (see Figure 5), we have two possibilities: 1) take
the one with more cumulative PoW or 2) challenge the provers by
requesting another specific LeapChain. Both cases together allow
us to select an arbitrary level of security.

Challenge-Response. As mentioned by [11] as a preferable prop-
erty, our scheme allows V to challenge P if the index of a block Y
is known with X < Y < Bj,. V can then calculate one out of sev-
eral valid LeapChains and request this specific chain as proof from
P, which makes it more difficult for P to create a fake chain. The
number of possible LeapChains increases with distance §, however,
determining the exact value is out of scope of this paper.

Note that a block does not need to store its index because a verifier
can always determine all indices as long as one block index (e.g. 0
for genesis) of the LeapChain is known. This property results from
the deterministic leap-line assignment based on the block index.

4 RELATED WORK

Most of the related work on verification of block inclusion is focused
on Simplified Payment Verification (SPV) in cryptocurrencies which
was already mentioned in the original Bitcoin whitepaper [3]. A light
node that wants to verify that a certain transaction is accepted, only
keeps the block headers without block data of the entire blockchain

ICCAD ’18, November 5-8, 2018, San Diego, CA, USA

Unknown Prefix X

1

: Unknown Suffix
.
_ 2

- Suffix Proofs
L1 - -

~, ~,
\,

i3<_14 .. -...

7< 8« 9 - 46< 47< 48« 49

I
‘II"\ y"‘\ ﬁsu 2 e e,
E, 22 ---- |38« 39«40«41 --- 45 --- |49

Figure 5: Suffix-proof for consensus verification of block X = 6. Here,
two valid proofs Ls,1and Ls,2 are shown that connect X to a recent
block B,, = 49, putting 43 additional blocks on top of X. However,
Lsulis longer and proves more cumulative PoW.

and verifies that the transaction belongs to a certain block header.
While block headers are much smaller than the full blocks, this
“naive SPV” approach scales linear with the length of the blockchain
and hence is not feasible on highly constrained devices.

Sidechain SPV. Another idea sketched in [11] suggests that each
block creates additional backlinks to every previous block using a
Merkle tree and including the root hash in the block header. Skip-
ping back is only allowed if the actual Proof-of-Work (PoW) of the
current block exceeds the cumulative PoW of all blocks in between,
resulting in an average proof length of log,(6). However, [11] does
not evaluate the proof size including the huge amount of additional
hashes of the backlinks which would exceed the memory capabilities
of embedded nodes.

Skipchains. The approach in [6] proposes a Skipchain S,I< where

each block stores I backlinks to the k’-th previous blocks for 0 <
i < 1-1.1Ifk < 0, this corresponds to a probabilistic scheme
where the number of skipped blocks equals the number of successful
Bernoulli trials with probability k. Considering blocks with high
PoW, this could be modeled as a Sé for ideal PoW distribution.
However, any chosen [is fixed and finite, resulting either in a very
limited logarithmic scaling or a large amount of backlinks, increasing
the proof size. In contrast to Skipchain, our LeapChain approach
only requires a single backlink to achieve logarithmic scaling via its
special pattern, which significantly reduces the memory overhead
of each block in a proof.

Proofs of Proof of Work (PoPoW). The most optimized state-of-
the-art approach is the PoPoW scheme [8, 10], which we use as a
benchmark. In this scheme, each block stores a vector of backlinks
only to those blocks that randomly happen to inherit a higher (or
“deeper”) PoW than required. The approach determines a “depth” p
for each hash H(B), such that H(B) < 27# - T and the j-th element
of the vector stores the hash of the nearest previous block that
satisfies j < p. This means that on average, the j-th backlink points
to every 2/-th previous block. A verifier can request a proof-chain
connected by the backlinks of depth j, such that each block of the
proof represents at least 2/ times the minimal PoW required for a
block.

While PoPoW relies on probabilistic assumption on how often
low hashes occur, LeapChain is fully deterministic. The proof size
of PoPoW [8] scales with log, log, |C]| - log,(8), while LeapChain
scales independent of the chain length |C| with only b - log, (5) by
using only a single backlink.

ICCAD ’18, November 5-8, 2018, San Diego, CA, USA

b | 4 6 8 12 16

Slog 1029 279945 134e6 107el2 295el8

Wiax = @1 256 46656 16.8e6 8.92el12 18.4¢l8

| Lin(B1og)| 20 44 76 164 284
size(Lin(Slog)) | 1.92kB 4.22kB 7.30kB 15.7kB 27.3kB

Table 1: LeapChain parameters for several bases b. The maximum
size of L;, applies when using a hash of 32 bytes (e.g. SHA-256).

5 EVALUATION

For our approach, we first introduce upper bounds to resource re-
quirements, which enable to select an appropriate embedded hard-
ware platform. Afterwards, we experimentally compare LeapChain
against related work in a simulation illustrating overall performance
gains and on embedded hardware to underpin LeapChain’s feasibil-

ity.

5.1 Analytical Discussion

Maximum Proof Size. As shown in Figure 3, a LeapChain proof
Liy can be divided into 3 parts: 1) an initial walk part to reach the
first leapline, 2) a jump part using several leaplines until we 3) walk
again to reach the target block. We estimate the maximum size of
Li, based on the worst-case length for each of these 3 parts.

1) The desired leapline can be reached in a maximum of b — 1
steps, because the pattern repeats after b blocks. 2) Each leapline
is used b — 1 times in the worst case, because if we need to jump
b times, we could jump once using the next higher leapline. The
highest exponent of a leapline we need to consider is e = |log (6)].
Thus, each of the e leaplines adds b — 1 blocks and between the
leaplines we need one additional step block to reach the next lower
leapline. This results in [log,(8)] - (b — 1 + 1) — 1 maximum blocks
for the jump part. 3) When using all leaplines, the last leap-width is
w = b. Thus, we need at most b — 1 blocks to walk to the target block,
but since the target block hash is already included in the second last
block, we only need b — 2 blocks. Combining these results, the proof
length is bounded by

[Lin(O)| < b [logy(8)] +2b -4,
with the corresponding proof size of sizeof(Li,) = sizeof(B) - | Lin|.

When all b leaplines are used, we reach |-£in(5log)| <b?+2b-4at
the maximum logarithmic distance Jjog.

§<b0g ®

Logarithmic Distance. Since the maximum leap-width wyax = pY
is a finite constant, the proof length will only scale logarithmic until
a distance

Slog = b+ +2b -3 9)

and scale linearly with a very low slope a = b=? afterwards. Blog 18
derived from the worst cases for each leapline (see previous para-
graph) with the difference that the distance includes the target block,
resulting in b — 1 instead of b — 2 for the last walking phase.

Table 1 provides several parameter sets to illustrate which maxi-
mum distance 8}, can be verified in log,, scaling and the correspond-
ing bound of steps |.£in(510g)|. Note that these are upper bounds and
in practice a more efficient proof can be found for § ~ 8jog. After Sjog

is reached, | L | increases linearly by 1 every a~! = b? additional
blocks.

Overhead. Since we store a single additional hash in each block,
the memory overhead over a conventional blockchain corresponds to

E. Regnath and S. Steinhorst

the size of the hash generated by the used hash function. For Bitcoin,
which uses SHA-256 and a full block size of 1 MB, the memory
overhead for nodes storing the full chain would be 32B/1MB =
0.0032%. Considering only block headers, the overhead would be
32B/80B = 40%, which is compensated as soon as § > 1.40 - | Ljy|.

The computational overhead for full nodes is negligible as each
leap-hash belongs to a block for which the hash is already known.

5.2 Security

We analyze security based on the difficulty for an adversary to
provide a fake proof. Our verification method relies on two different
mechanisms, the infix proof for proving the inclusion of a block in
the blockchain and a suffix proof for proving that a block is accepted
by consensus. The security of the infix proof relies on the integrity
of the chain of hashes, while the security of the suffix proof relies
on the security of the underlying consensus mechanism, which we
will discuss for Proof of Work.

Integrity Guarantees. The security of an infix proof L;, relies
solely on the preimage resistance of the hash function H. In order
to change any block B; that existed before a valid and known block
By, an adversary would need to successfully run a preimage attack
on the hash function H. Note that a preimage attack is much more
difficult than a collision attack, which only requires to find any two
identical hash values and not a specific one. Since the hash of B;
is included in the next block Bj1, the adversary would need to
find an alternative block Bl’. with the exact same hash as B;, thus
satisfying H(B;) = H(B;). For an ideal hash function of x bits, this
requires 2% tries on average, which for 256 bit is infeasible. For every
block in L, either the prev-hash or the leap-hash stores the hash
of the previous block and both hash values are stored in the block
header which also gets hashed to obtain the current block hash. The
working principle of the prev-hash and the leap-hash is the same
and thus the integrity of every block, whose hash is included by
one of the two hash fields within the infix proof, is guaranteed. As a
result, any valid infix proof provides the same security as the full
chain regarding its integrity guarantees.

Consensus Guarantees. In the case of a PoW blockchain, the se-
curity of the suffix proof Ly, relies on its cumulative PoW that an
adversary would need to spend to construct a fake proof inheriting
the same PoW. The cumulative PoW is expressed as multiple of the
minimum required PoW (= 1PoW) to mine a single valid block with
H(B;) < T.In our scenario, T is assumed to be constant and there-
fore every block inherits the same PoW on average. As a result, the
cumulative PoW of Lg, can be estimated as the length | Lg,| times
the average PoW of any block B; € C.

Since we place the required nonce field in the block-data, a miner
would need to calculate two hashes — the data-hash and the block
header-hash - for each attempt to solve the PoW, which will increase
the computational effort. However, the purpose of PoW is to perform
a certain amount of work involving billions of hash operations, so the
double hashing can simply be adjusted by the difficulty. As already
mentioned, our approach can be easily adapted to variable difficulty
by storing the difficulty together with the nonce in the block data. As
shown by [9] and [8], the consensus is then determined by counting
the PoW of a block proportional to its difficulty.

Although L, provides in principle less security compared to
the full chain due to a shorter chain length, LeapChain provides a
sufficiently high and more constant security. First, the distribution
of the consensus guarantees in the full chain is not constant but

LeapChain: Efficient Blockchain Verification for Embedded loT

increases from the most recent block to the genesis block, making
recent blocks less secure than older blocks. Second, the overall secu-
rity of every block infinitely increases with each new block that is
appended to the blockchain, securing already sufficiently secured
blocks by an increasingly superfluous amount of cumulative PoW on
top of them. Therefore, we use the fact that LeapChain is more effi-
cient than the full chain, in the sense that it allows to freely choose a
flexible security parameter m = | Lg,|, in order to ensure a constant
security level for the suffix proof. For the m most recent blocks,
LeapChain provides the same security as the full chain because, in
this case, the suffix proof Lg, equals the suffix of the full chain. For
blocks that are older than the m most recent blocks in the full chain,
the parameter m can be chosen between the shortest possible proof
length | Liy| and the distance §.

As an example, we assume an attacker P with 10% of all hashing
power that wants to convince a verifier V of a fake block X’ and
we set m = 50. If the latest block is within the first 50 blocks after
X, the attacker would need to mine all blocks from X’ to the latest
block faster than the honest majority and the likelihood of success
can be expressed by the equation from [3]:

z kA z—k
Succ(z,q) =1 - Z ().)k!e (1 - (&1)) (10)

k=0

Here, z is the amount of blocks to mine and A = z% where ¢

equals the hashing power of the attacker. For 50 blocks, this results
in Succ(50,0.1) = 7.3 x 10717,

For comparison, most Bitcoin applications require only 6 most
recent blocks to trust the consensus as settled [1, 8], which results in
an attack success probability of Succ(6,0.1) = 2.4 x 1074, Note that
each attack attempt demands high computational effort, so even if
this probability seems relatively high, an attacker would need to
spend a great amount of money for every single attack attempt. The
security of a blockchain in general relies on the fact that attacks cause
huge financial damage to an attacker with overwhelming probability.
However, by requiring 50 blocks, Lg, exceeds this basic security
and approaches the very small success probability of Succ(50, 0.1).
For blocks older than the first 50 blocks an attacker has more time to
mine fake blocks but still needs to continuously mine blocks as every
suffix proofs contains recent blocks and the blocks chosen for the
suffix proof are changing. As an improvement, one could also require
that each suffix proof always contains the b most recent blocks in a
row to ensure at very least a security of Succ(8,0.1) = 1.7 X 107>

Even in the unlikely case that an attacker would manage to pro-
vide a fake proof, the verifier V which would then receive proofs
with different versions of block X, could still challenge the provers,
which would require the attacker to find another fake proof within
a few seconds, which is infeasible.

Overall, LeapChain offers a controllable, constant, and high secu-
rity and we will evaluate its embedded performance for an already
very high security level of m = 50.

5.3 Simulation

We simulated our LeapChain approach in Python on the block head-
ers of randomly generated blockchains using our block structure.
We included random data-hashes as the block data is not relevant for
our proof construction. For the hash function H(-) we have chosen
SHA-256, which outputs a hash of 32 bytes. As shown by [12], the
computation time of SHA-256 is linear to its input size. Since hashing
is the computationally most intensive operation in the verification,

ICCAD ’18, November 5-8, 2018, San Diego, CA, USA

- - - Naive SPV —&— PoPoW —6— LeapChain
3 T T T T T 1
) goasp s
B S 10| S
» 5 |- |
. N H
wv
0 w : \ \ 028 L1 L
0 250 500 750 1,000 4 8 12
a) Distance & b) Base b

Figure 6: Simulated infix proof sizes when using ideal PoW distribu-
tion. a) Maximum proof size for b = 4 and |C| = 1029 over 5. PoPoW
and LeapChain scale logarithmic compared to the naive SPV. b) Av-
erage (marked with 0/0), min./max. (=), and analytical upper bound
() of proof size over all § = [1, §jo;] depending on b.

the overall computational effort is proportional to the total amount
of data bytes that are hashed.

For comparison, we implemented the Proofs-of-Proof-of-Work
(PoPoW) scheme [10] with the interlink vector stored directly in the
block header using our block structure. We also applied suggested
optimizations such as storing the vector in a Merkle tree, which
requires only loglog |C| hashes to be included in the proof for each
block. When the prev-hash is used, the interlink vector was omitted
to further reduce the proof size. For proof of inclusion, we iteratively
selected the interlink with the longest jump that approaches the
target block. For the PoW verification, we constructed proofs for all
possible interlink depths and then selected the shortest proof that
provides the required cumulative PoW.

We measured the following three metrics that are relevant for
the verification on an embedded device: 1) the size of a proof, that
needs to be transmitted and processed, 2) the computational effort to
verify a proof in hashed bytes, and 3) for a suffix proof the security
as its cumulative PoW.

Results. For embedded devices, the proof size is most important
because it corresponds to the amount of data that needs to be re-
ceived and processed. Figure 6 shows the measured size and ana-
lytical bounds of infix proofs for several bases b. In contrast to the
naive SPV, the maximum proof size of PoPoW and LeapChain scales
logarithmic, leading to small proof sizes.

For this measurement, we used ideal PoW distribution for PoPoW,
where exactly every 2#-th block has a hash < T/2# and is included in
the interlink. Even in this best case for PoPoW, LeapChain provides
11% smaller proof sizes on average.

When using a random PoW distribution, as it occurs in real
blockchains, the performance gain of LeapChain is even higher
for infix proofs (Figure 7a). Since PoPoW relies on probabilistic as-
sumptions about how often low hashes will occur, proof sizes are
subject to a high variance, which leads to peaks of large proof sizes.
In the absolute worst case, PoPoW would need to included every
block leading to the same proof size as the naive SPV.

Regarding the computational effort, LeapChain also significantly
outperforms PoPoW. For LeapChain, the hashed data is equal to
the proof size but PoPoW requires additional hash operations for
looking up the interlink in the Merkle tree.

In the case of suffix proofs (Figure 7b), which require a minimum
cumulative PoW, PoPoW comes closer to the size of LeapChain on
average but still produces a high amount of peaks that are two to
three times larger. Although PoPoW links to blocks that inherit a
higher PoW, only the required PoW to convince a verifier increases

ICCAD ’18, November 5-8, 2018, San Diego, CA, USA

E. Regnath and S. Steinhorst

PoPoW
LeapChain
T T
o 10 -1
=,
Q
N 5H u!
wv
0 i i i i u
B 15 .
2 10H .
£
S 5H H
=
0 \ \ \ \ .
0 2 4 6 8 10
a) Distance & in 10° blocks

400 |- e
%
Ay
L 200 | |
I8’ Y e Lo AlJlr"lAA‘ L) W uv““._:‘_ u_—'A Lo
I | | | | L
T T T T T T
o 10 -
24,
8 5 Tw - s —
w
0 i i i i u
8 1s5p i
= .
=
< 5
2l
0 | | | | H
0 2 4 6 8 10
b) Distance § in 10° blocks

Figure 7: Simulated proofs using |C| = 10 x 10°, b = 8 and random PoW distribution. a) Infix proofs. b) Suffix proofs with required cumulative
PoW },PoW > 50. LeapChain outperforms PoPoW in both scenarios by achieving lower average and maximum values and a smaller variance

for proof size and computational effort.

the proof security. A higher cumulative PoW is only of advantage
when several competing proofs need to be compared, in which case
LeapChain can also challenge the provers. We have chosen a high
required cumulative PoW of }} PoW > 50, although Bitcoin already
considers a block as part of the consensus if there is a suffix of 6
recent blocks with Y, PoW > 6 [1, 8].

Overall, the high variance of PoPoW proofs poses a critical uncer-
tainty for embedded devices which cannot afford to provide large
resource reserves [2]. By contrast, LeapChain is fully deterministic
and guarantees tight upper bounds of proof size and computational
effort, which are close to measured maximum values.

5.4 Running on ESP32 Chipset

In order to compare the approaches on a real embedded IoT plat-
form, we tested them on the ESP32 chipset (2 X 240 MHz) using
MicroPython v1.8.6 with 57 kB available SRAM on the WiPy 2.0
board. For the implementation we used SHA-256 of the uhashlib.
We tested 3602 infix proofs with |C| = 10 x 10° and § € [1,|C]]
in steps of A§ = 2777. Our LeapChain approach with b = 8 veri-
fied all proofs within an average time of 196 ms and a maximum
time of 275 ms. PoPoW with ideal PoW distribution (best case) was
about 14% slower on average (224 ms) and 29% slower on the longest
proof (355 ms), which is in line with our simulation results. Consid-
ering its worst-case behavior on random PoW distribution, PoPoW
ran out of memory and crashed on the first proof after 133 blocks.
Although an optimized C implementation would further reduce
hardware requirements, our implementation already demonstrates
LeapChain’s feasibility on constrained IoT platforms and shows that
PoPoW inherits the risk to fail completely.

6 CONCLUSION

Our approach enables embedded IoT devices to verify data integrity
and consensus on a blockchain within milliseconds. The LeapChain
proof size scales logarithmically with blogy, () to the block distance
6 while maintaining the same integrity guarantees as the full chain.
For consensus verification of PoW blockchains, LeapChain provides

a dynamically adjustable security parameter m and already our
selection of m = 50 significantly exceeds the security requirements
of most existing blockchain applications.

Setting b = 8, we could verify the inclusion of any block out of
134 million blocks using at most 76 block headers and outperform
existing approaches by at least 11% regarding average proof size.
While existing approaches could exceed several megabytes of proof
size in the worst case, LeapChain guarantees a deterministic and
tight upper bound of 7.3 kB, enabling efficient and safe blockchain
applications on embedded IoT devices.

REFERENCES

[1] Marko Vukoli¢. 2016. The Quest for Scalable Blockchain Fabric: Proof-of-Work vs.

BFT Replication. Springer International Publishing, Cham, 112-125.

Shreyas Sen. 2016. Invited: Context-aware energy-efficient communication for

10T sensor nodes. In Proceedings of the 53rd Annual Design Automation Conference

(DAC ’16). ACM, New York, NY, USA, Article 67, 6 pages.

Satoshi Nakomoto. 2008. Bitcoin: A peer-to-peer electronic cash system.

[4] Konstantinos Christidis and Michael Devetsikiotis. 2016. Blockchains and Smart
Contracts for the Internet of Things. IEEE Access 4, 2292-2303.

[5] Boohyung Lee and Jong-Hyouk Lee. 2017. Blockchain-based secure firmware
update for embedded devices in an Internet of Things environment. The Journal
of Supercomputing 73, 3, 1152-1167.

[6] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus
Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford. 2017. CHAINIAC: Proactive
Software-Update Transparency via Collectively Signed Skipchains and Verified
Builds. In 26th USENIX Security Symposium (USENIX Security 17). 1271-1287.

[7] Marco Steger, Ali Dorri, Salil S. Kanhere, Kay Rémer, Raja Jurdak, and Michael
Karner. 2018. Secure Wireless Automotive Software Updates Using Blockchains: A
Proof of Concept. Springer International Publishing, Cham, 137-149.

[8] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. 2017. Non-interactive
proofs of proof-of-work. In Cryptology ePrint Archive.

[9] Juan A Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Back-
bone Protocol: Analysis and Applications. In EUROCRYPT (2). Springer Berlin
Heidelberg, 281-310.

[10] Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-panagiota Stouka. 2016. Proofs
of Proofs of Work with Sublinear Complexity. In Financial Cryptography and Data
Security. Springer Berlin Heidelberg, Christ Church, Barbados, 61-78.

[11] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,
Andrew Miller, Andrew Poelstra, Jorge Timon, and Pieter Wuille. 2014. Enabling
Blockchain Innovations with Pegged Sidechains. (22 10 2014).

[12] Sanat Ghoshal and Goutam Paul. 2016. Exploiting Block-Chain Data Structure for
Auditorless Auditing on Cloud Data. Springer International Publishing, 359-371.

[2

&8

